Abstract
We study the algebraic symplectic geometry of multiplicative quiver varieties, which are moduli spaces of representations of certain quiver algebras, introduced by Crawley-Boevey and Shaw in 2006, called multiplicative preprojective algebras. They are multiplicative analogues of Nakajima quiver varieties. They include character varieties of (open) Riemann surfaces fixing conjugacy class closures of the monodromies around punctures, when the quiver is “crab-shaped.” We prove that under suitable hypotheses on the dimension vector of the representations, or the conjugacy classes of monodromies in the character variety case, the normalizations of such moduli spaces are symplectic singularities and the existence of a symplectic resolution depends on a combinatorial condition on the quiver and the dimension vector. These results are analogous to those obtained by Bellamy and the first author in the ordinary quiver variety case and for character varieties of closed Riemann surfaces. At the end of the paper, we outline some conjectural generalizations to moduli spaces of objects in 2-Calabi–Yau categories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.