Abstract
The constantly challenging requirements for orbit prediction have opened the need for better onboard propagation tools. Runge-Kutta (RK) integrators have been widely used for this purpose; however RK integrators are not symplectic, which means that RK integrators may lead to incorrect global behavior and degraded accuracy. Emanating from Deprit’s radial intermediary, obtained by the elimination of the parallax transformation, we present the development of symplectic integrators of different orders for spacecraft orbit propagation. Through a set of numerical simulations, it is shown that these integrators are more accurate and substantially faster than Runge-Kutta-based methods. Moreover, it is also shown that the proposed integrators are more accurate than analytic propagation algorithms based on Deprit’s radial intermediary solution, and even other previously-developed symplectic integrators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.