Abstract

We study the use of methods based on the real symplectic groups Sp(2n,R) in the analysis of the Arthurs-Kelly model of proposed simultaneous measurements of position and momentum in quantum mechanics. Consistent with the fact that such measurements are in fact not possible, with arbitrary precision, we show that the observable consequences of the Arthurs-Kelly interaction term are contained in the symplectic transformation law connecting the system plus apparatus variance matrices at an initial and a final time. The individual variance matrices are made up of averages and spreads or uncertainties for single hermitian observables one at a time, which are quantum mechanically well defined. The consequences of the multimode symplectic covariant Uncertainty Principle in the Arthurs-Kelly context are examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.