Abstract
Various time-series decomposition techniques, including wavelet transform, singular spectrum analysis, empirical mode decomposition and independent component analysis, have been developed for non-linear dynamic system analysis. In this paper, we describe a symplectic geometry spectrum analysis (SGSA) method to decompose a time series into a set of independent additive components. SGSA is performed in four steps: embedding, symplectic QR decomposition, grouping and diagonal averaging. The obtained components can be used for de-noising, prediction, control and synchronization. We demonstrate the effectiveness of SGSA in reconstructing and predicting two noisy benchmark nonlinear dynamic systems: the Lorenz and Mackey-Glass attractors. Examples of prediction of a decadal average sunspot number time series and a mechanomyographic signal recorded from human skeletal muscle further demonstrate the applicability of the SGSA method in real-life applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.