Abstract

Circuit quantization is an extraordinarily successful theory that describes the behavior of quantum circuits with high precision. The most widely used approach of circuit quantization relies on introducing a classical Lagrangian whose degrees of freedom are either magnetic fluxes or electric charges in the circuit. By combining nonlinear circuit elements (such as Josephson junctions or quantum phase slips), it is possible to build circuits where a standard Lagrangian description (and thus the standard quantization method) does not exist. Inspired by the mathematics of symplectic geometry and graph theory, we address this challenge, and present a Hamiltonian formulation of nondissipative electrodynamic circuits. The resulting procedure for circuit quantization is independent of whether circuit elements are linear or nonlinear, or if the circuit is driven by external biases. We explain how to rederive known results from our formalism, and provide an efficient algorithm for quantizing circuits, including those that cannot be quantized using existing methods. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.