Abstract
We explore the concept of the extended Galilei group, a representation for the symplectic quantum mechanics in the manifold G, written in the light-cone of a five-dimensional de Sitter space-time in the phase space. The Hilbert space is constructed endowed with a symplectic structure. We study the unitary operators describing rotations and translations, whose generators satisfy the Lie algebra of G. This representation gives rise to the Schr¨odinger (Klein–Gordon-like) equation for the wave function in the phase space such that the dependent variables have the position and linear momentum contents. The wave functions are associated to the Wigner function through the Moyal product such that the wave functions represent a quasiamplitude of probability. We construct the Pauli–Schr¨odinger (Dirac-like) equation in the phase space in its explicitly covariant form. Finally, we show the equivalence between the five-dimensional formalism of the phase space with the usual formalism, proposing a solution that recovers the non-covariant form of the Pauli–Schr¨odinger equation in the phase space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.