Abstract

We study two-dimensional conformal field theories generated from a ``symplectic fermion'' - a free two-component fermion field of spin one - and construct the maximal local supersymmetric conformal field theory generated from it. This theory has central charge c=-2 and provides the simplest example of a theory with logarithmic operators. Twisted states with respect to the global SL(2,C)-symmetry of the symplectic fermions are introduced and we describe in detail how one obtains a consistent set of twisted amplitudes. We study orbifold models with respect to finite subgroups of SL(2,C) and obtain their modular invariant partition functions. In the case of the cyclic orbifolds explicit expressions are given for all two-, three- and four-point functions of the fundamental fields. The C_2-orbifold is shown to be isomorphic to the bosonic local logarithmic conformal field theory of the triplet algebra encountered previously. We discuss the relation of the C_4-orbifold to critical dense polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.