Abstract
A general prescription for the treatment of constrained quantum motion is outlined. We consider in particular constraints defined by algebraic submanifolds of the quantum state space. The resulting formalism is applied to obtain solutions to the constrained dynamics of systems of multiple spin particles. When the motion is constrained to a certain product space containing all of the energy eigenstates, the dynamics thus obtained are quasi-unitary in the sense that the equations of motion take a form identical to that of unitary motion, but with different boundary conditions. When the constrained subspace is a product space of disentangled states, the associated motion is more intricate. Nevertheless, the equations of motion satisfied by the dynamical variables are obtained in closed form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.