Abstract

An orbit-attitude coupling dynamic model for the spatial rigid rod that is abstracted from the large-stiffness slender components widely used in spatial structures is established, and the symplectic method is used to estimate the validity of the dynamic model by analyzing the coupling dynamic behaviors of the rod in this work. Based on the Hamiltonian variational principle, the orbit-attitude dynamic model of the spatial rigid rod is proposed, and the canonical form of the model is presented first. Then, the symplectic Runge–Kutta method is developed, and the structure-preserving properties of the canonical form, including the conservation law of energy and conservative property in the phase space, are investigated to illustrate the validity of the numerical results obtained by the symplectic Runge–Kutta method subsequently. Finally, the effects of the nonspherical perturbations of the Earth on the coupling dynamic behaviors are investigated numerically. From the simulation results, it can be concluded that the main orbit-attitude coupling dynamic behaviors of the spatial large-stiffness slender component excited by the nonspherical perturbation can be described by the proposed dynamic model ignoring the deformation as well as the transverse vibration of the slender component, which provides an approach for simplifying rapid dynamic analysis on the spatial large-stiffness slender component. In addition, the validity and the structure-preserving properties of the symplectic Runge–Kutta method for the orbit-attitude coupling dynamic problem of the spatial rigid rod are also illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.