Abstract
The sympathetic nervous system (SNS) is a critically important regulator of the cardiovascular system. The SNS controls cardiac output and its distribution, as well as peripheral vascular resistance and blood pressure at rest and during exercise. Aging is associated with increased blood pressure and decreased skeletal muscle blood flow at rest and in response to exercise. The mechanisms responsible for the blunted skeletal muscle blood flow response to dynamic exercise with aging have not been fully elucidated; however, increased muscle sympathetic nerve activity (MSNA), elevated vascular resistance, and a decline in endothelium-dependent vasodilation are commonly reported in older adults. In contrast to aging, exercise training has been shown to reduce blood pressure and enhance skeletal muscle vascular function. Exercise training has been shown to enhance nitric oxide-dependent vascular function and may improve the vasodilatory capacity of the skeletal muscle vasculature; however, surprisingly little is known about the effect of exercise training on the neural control of circulation. The control of blood pressure and skeletal muscle blood flow also differs between men and women. Blood pressure and MSNA appear to be lower in young women than in men. However, females experience a larger increase in MSNA with aging compared with males. The mechanism(s) underlying the altered SNS control of vascular function in females remains to be determined. Novelty: This review summarizes our current understanding of the effects of aging, exercise training, and sex on sympathetic vasoconstriction at rest and during exercise. Areas where additional research is needed are also identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.