Abstract

BackgroundHER2 antagonists (anti-HER2; e.g., trastuzumab and lapatinib) are effective in treating an aggressive form of breast cancer (BC), but can cause cardiotoxicity due to the disruption in neuregulin (NRG)/HER2+ ligand receptor signalling. The recent data show that NRG-HER2 receptors located in the medulla oblongata are important regulators of vasomotor tone. Disrupting the NRG-HER2 signalling in mouse medulla results in increased sympathetic nerve output and blood pressure. We hypothesized that anti-HER2 agents would cause increased sympathetic tone with changes in plasma catecholamines and NRG.MethodsIn 15 newly diagnosed HER2+ BC patients receiving anti-HER2 agents, vital signs were measured along with supine plasma epinephrine (EPI), norepinephrine (NE), and NRG at baseline and three months. Serial echocardiography was performed.ResultsWith three months of anti-HER2 treatment, NE increased (2.334 ± 1.294 nmol/L vs. 3.262 ± 2.103 nmol/L; p = 0.004) and NRG decreased (12.7±15.7 ng/ml vs. 10.9 ± 13.3 ng/ml; p = 0.036) with a corresponding increase in systolic blood pressure (110 ± 10 mmHg vs. 120 ± 16 mmHg, p = 0.049) and diastolic blood pressure (67 ± 14 vs. 77 ± 10, p = 0.009). There was no change, however, in EPI (0.183 ± 0.151 nmol/L vs. 0.159 ± 0.174 nmol/L; p = 0.519) or heart rate (73 ± 12 bpm vs. 77 ± 10 bpm, p = 0.146). Left ventricular ejection function declined over the follow-up period (baseline 63 ± 6% vs. follow-up 56 ± 5%).ConclusionsAnti-HER2 treatment results in increased NE, blood pressure, and decreased NRG; this suggests that the inhibition of NRGHER2 signalling leads to increased sympathoneural tone. Larger studies are needed to determine if these observations have prognostic value and may be offset with medical interventions, such as beta-blockers.Clinical Trial RegistrationThe study was registered with www.clinicaltrials.gov (NCT00875238).

Highlights

  • Trastuzumab (TZB) and lapatanib (LAP) are biological antagonists targeting the HER2/neu receptors which have dramatically improved outcomes for HER2+ breast cancer (BC), a variant of the disease which is generally associated with a poor prognosis [1, 2]

  • Anti-HER2 treatment results in increased NE, blood pressure, and decreased NRG; this suggests that the inhibition of NRGHER2 signalling leads to increased sympathoneural tone

  • Both TZB and LAP have been associated with the development of overt heart failure (HF), or asymptomatic cardiac dysfunction, and this is attributed to the disruption in the homeostatic myocardial regulation via neuregulin (NRG)-HER2 signalling

Read more

Summary

Introduction

Trastuzumab (TZB) and lapatanib (LAP) are biological antagonists targeting the HER2/neu receptors ( known as ERBB2 receptor) which have dramatically improved outcomes for HER2+ breast cancer (BC), a variant of the disease which is generally associated with a poor prognosis [1, 2]. TZB and LAP are used in the treatment of local and advanced HER2+ BC Both TZB and LAP have been associated with the development of overt heart failure (HF), or asymptomatic cardiac dysfunction, and this is attributed to the disruption in the homeostatic myocardial regulation via neuregulin (NRG)-HER2 signalling. Microinjection of NRG into the RVLM results in decreases in arterial blood pressure, heart rate, and sympathetic nerve traffic [9]. HER2 inhibitors in mice cause increased arterial pressure and sympathetic nerve activity [9]. HER2 antagonists (anti-HER2; e.g., trastuzumab and lapatinib) are effective in treating an aggressive form of breast cancer (BC), but can cause cardiotoxicity due to the disruption in neuregulin (NRG)/HER2+ ligand receptor signalling. Disrupting the NRG-HER2 signalling in mouse medulla results in increased sympathetic nerve output and blood pressure. We hypothesized that anti-HER2 agents would cause increased sympathetic tone with changes in plasma catecholamines and NRG

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.