Abstract

ObjectiveThis study aimed to address the status, role, and mechanism of sympathetic nerve infiltration in the progression of stomach adenocarcinoma (STAD). MethodsSympathetic nerve and its neurotransmitter NE, β-ARs, and associated signaling molecules in the STAD tissues and the adjacent tissues from 46 STAD patients were examined using immunostaining, HPLC, and western blotting. The effects and mechanisms of β2-AR activation on the proliferation, migration and invasion of AGS and SGC-7901 gastric cancer (GC) cell lines were examined using CCK-8, transwell, and western blotting assays. Correlations between genes and STAD survival were analyzed using bioinformatics. ResultsStriking sympathetic nerve infiltration, elevations of NGF, TrkA, GAP43, TH, S100, NE, β2-AR, YKL-40, syndecan-1, MMP9, CD206, and CD31 were observed in the STAD tissues compared to the adjacent tissues. Activation of β2-AR in the two GC cell lines significantly amplified the expressions of NGF, YKL-40, MMP9, syndecan-1, p-STAT3 and p-ERK, and increased GC cell proliferation, migration and invasion. Bioinformatic analyses revealed positive correlations of NGF, β2-AR, syndecan-1, and macrophage infiltration, respectively, with low survival of STAD, of β2-AR respectively with STAT3, ERK1/2 (MAPK1/3), YKL-40, MMP9, and syndecan-1, and of YKL-40 with MMP9. ConclusionSympathetic nerves significantly infiltrated into human STAD tissues as a result of high NGF and TrkA expressions; elevated NE led to overactivation of β2-AR-STAT3/ERK-YKL-40 signaling pathway, and finally caused cancer cell growth and invasion, M2 macrophage infiltration, angiogenesis, matrix degradation and STAD metastasis and progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call