Abstract

Sympathetic flaring is defined as the initiation of a solar flare as a result of a transient phenomenon occurring elsewhere on the Sun. Discovery of sympathetic flaring or lack thereof, may lead to a greater understanding of the physics of flare initiation. Knowledge of a mechanism for initiating solar flares would also aid in predicting at least some solar flares. Two studies of sympathetic flaring are presented in this paper. The first part of the paper presents a test for sympathetic flaring in flares observed with the Burst and Transient Source Experiment. A Monte Carlo simulation is used to compare the distribution of solar X-ray flares in time to that expected from a time-varying, Poisson distribution. No evidence for sympathetic flaring is found, though it cannot be ruled out. The X-ray flare data also do not allow discovery of sympathetic flares occurring within 2 min of the initial flare. Because the observations do allow for at least some flares to occur sympathetically, the second part of the paper examines one possible mechanism for initiating flares. The mechanism examined is large-scale coronal transients observed by the SOHO/Extreme Ultraviolet Imaging Telescope: EIT waves. A comparison of the rate of flaring in the interval prior to an EIT wave to the rate of flaring while the wave traverses the solar disk shows no increase in the number of flares due to the EIT wave.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call