Abstract

Sympathetic denervation enhances agonist-induced vasoconstriction. This effect may involve altered function of signaling mechanisms such as Rho kinase (Rock) and L-type Ca channels downstream from vasoconstrictor receptors. We tested if enhanced Rock and L-type calcium channel activation contribute to exaggerated norepinephrine-induced vasoconstrictions in renal and mesenteric resistance arteries after sympathectomy. Rats underwent neonatal sympathectomy or sham sympathectomy. Resistance arteries were investigated by small vessel myography. Vascular Rock and L-type Ca channel expression as well as Rock activation were investigated by quantitative real-time PCR and Western blot. Vascular smooth muscle cell (VSMC) membrane potential was recorded with microelectrodes. Sympathetic denervation enhanced norepinephrine sensitivity in renal and mesenteric arteries. Both, Rock inhibition or L-type Ca inhibition shifted the norepinephrine concentration-response curve to the right. This effect was more pronounced in renal than in mesenteric arteries from sympathectomized vs. sham-sympathectomized animals. The L-type Ca channel activator S-(-)-BayK8644 elicited strong vasoconstrictions only in renal arteries from sympathectomized rats. Rock activity and L-type Ca channel α-subunit expression were similar in renal arteries from sympathectomized and sham-sympathectomized animals. VSMC membrane potential was -57.5 ± 2.0 and -64.3 ± 0.3 mV (P < 0.01), respectively, in renal arteries from sympathectomized and from sham-sympathectomized rats. Depolarization enhanced and KATP channel activation abolished S-(-)-BayK8644-induced contractions in renal arteries from sympathectomized rats. Sympathetic denervation enhances L-type Ca channel-dependent signaling in renal but not in mesenteric arteries. This effect may be partly explained by the decreased VSMC membrane potential in denervated renal arteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.