Abstract

We have previously described a rat model that responds to repetitive episodic hypoxia (FiO2 nadir 3-5% for 12 seconds every 30 seconds for 7 hr/day for 35 days) with chronic increase in arterial blood pressure. The purpose of the current study was to determine if peripheral sympathetic nervous system denervation blocks this persistent blood pressure elevation. Chemical sympathetic denervation was achieved and maintained by three intraperitoneal injections (100 mg/kg 6-hydroxydopamine) on days 1, 3, and 27 of a 47-day experiment in two groups of rats. One denervated group was subjected to episodic hypoxia for 40 consecutive days beginning on day 7 and the other remained unhandled in their usual cages. A third group was injected with vehicle only and subjected to the same episodic hypoxia while a fourth group remained unhandled for 40 days. The vehicle-treated, episodic hypoxia-exposed group showed a 7.7 mm Hg increase in mean arterial blood pressure (conscious, unrestrained) over the 40-day period, whereas all other groups showed a decrease in mean arterial pressure. The left ventricle and septum/whole body weight ratio was higher in both episodic hypoxia-exposed groups at the end of the study. Plasma epinephrine in both groups administered 6-hydroxydopamine was higher on day 6 than in the vehicle-injected rats. Measurement of catecholamines in cardiac muscle homogenate confirmed denervation in 6-hydroxydopamine animals. These results indicate that the peripheral sympathetic nervous system is necessary for the persistent increase in blood pressure in response to repetitive episodic hypoxia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call