Abstract

We present experimental results in which single ${\mathrm{Ca}}^{+}$ ions in a chain of laser cooled ${\mathrm{Ca}}^{+}$ ions are further ionized by means of an intense short pulse laser. The ions are trapped in a linear Paul trap, which is instantaneously loaded by ions from a laser-produced ablation plasma. Due to sympathetic cooling the doubly charged ions are held in place. We study and characterize linear few-ion crystals with mixed charges by applying a radio frequency field, which excites the center of mass (c.m.) and breathing modes of different configurations. From the position shift of laser cooled ions initiated through the higher charge state we can deduce the charge of the nonfluorescing ion. This information might be used as an intensity probe for high intensity lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.