Abstract
The role of the sympathetic nervous system in cerebral autoregulation remains poorly characterized. We examined cerebral blood flow responses to augmented arterial pressure oscillations with and without sympathetic blockade and compared them with responses in the forearm circulation. An oscillatory lower body negative pressure of 40 mm Hg was used at 6 frequencies from 0.03 to 0.08 Hz in 11 healthy subjects with and without alpha-adrenergic blockade by phentolamine. Sympathetic blockade resulted in unchanged mean pressure and cerebral flow. The transfer function relationship to arterial pressure at frequencies >0.05 Hz was significantly increased in both the cerebral and brachial circulations, but the coherence of the relation remained weak at the lowest frequencies in the cerebral circulation. Our data demonstrate a strong, frequency-dependent role for sympathetic regulation of blood flow in both cerebral and brachial circulations. However, marked differences in the response to blockade suggest the control of the cerebral circulation at longer time scales is characterized by important nonlinearities and relies on regulatory mechanisms other than the sympathetic system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.