Abstract

Enhanced sympathetic activity at the ventricular myocardium can destabilize repolarization, increasing the risk of death. Sympathetic activity is known to cluster in low-frequency bursts; therefore, we hypothesized that sympathetic activity induces periodic low-frequency changes of repolarization. We developed a technique to assess the sympathetic effect on repolarization and identified periodic components in the low-frequency spectral range (≤0.1 Hz), which we termed periodic repolarization dynamics (PRD). We investigated the physiological properties of PRD in multiple experimental studies, including a swine model of steady-state ventilation (n=7) and human studies involving fixed atrial pacing (n=10), passive head-up tilt testing (n=11), low-intensity exercise testing (n=11), and beta blockade (n=10). We tested the prognostic power of PRD in 908 survivors of acute myocardial infarction (MI). Finally, we tested the predictive values of PRD and T-wave alternans (TWA) in 2,965 patients undergoing clinically indicated exercise testing. PRD was not related to underlying respiratory activity (P<0.001) or heart-rate variability (P=0.002). Furthermore, PRD was enhanced by activation of the sympathetic nervous system, and pharmacological blockade of sympathetic nervous system activity suppressed PRD (P≤0.005 for both). Increased PRD was the strongest single risk predictor of 5-year total mortality (hazard ratio 4.75, 95% CI 2.94-7.66; P<0.001) after acute MI. In patients undergoing exercise testing, the predictive value of PRD was strong and complementary to that of TWA. We have described and identified low-frequency rhythmic modulations of repolarization that are associated with sympathetic activity. Increased PRD can be used as a predictor of mortality in survivors of acute MI and patients undergoing exercise testing. ClinicalTrials.gov NCT00196274. This study was funded by Angewandte Klinische Forschung, University of Tübingen (252-1-0).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.