Abstract

Primary afferent units in the saphenous nerve of cats, functionally identified as A-delta myelinated nociceptors, were tested for their responses to stimulation of the sympathetic trunk. The units were subdivided functionally into A-mechano-heat receptors (AMHs), which respond to both noxious heat and pressure, and high-threshold mechanoreceptors (HTMs), which respond only to pressure. No units of either subdivision were activated by sympathetic stimulation (SS) prior to noxious heating of their receptive fields. However, six of the seven AMH units with the highest mechanical thresholds (greater than 5 g von Frey) were activated by SS alone (10 Hz) after they had been sensitized by noxious heating of their receptive fields. Sensitized AMH units with lower mechanical thresholds (less than 5 g) were generally not activated by SS alone (1 of 22 units), and their responses to warming of their receptive fields were not altered by SS. The excitatory sympathetic action on AMH units was abolished by alpha- but not beta-andrenergic blockade in the two units tested. HTMs were unresponsive to SS even after repeated noxious heating of their receptive fields (15 units tested). The results of this study indicate that relatively high rates of sympathetic efferent activity (10 Hz) can induce firing in a small population of AMH receptors in damaged skin, specifically those units with high mechanical thresholds. This sympathetically evoked activity might trigger or exacerbate pain associated with skin damage; however, functional conclusions are difficult to draw, because of the scarcity of such units and the fact that the responses in some were brief and of low firing rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.