Abstract

IntroductionUsing a novel method called near-infrared transillumination backscattering sounding (NIR-T/BSS) that allows for the non-invasive measurement of pial artery pulsation (cc-TQ) and subarachnoid width (sas-TQ) in humans, we assessed the influence of sympathetic activation on the cardiac and respiratory contribution to blood pressure (BP) cc-TQ oscillations in healthy subjects.MethodsThe pial artery and subarachnoid width response to handgrip (HGT) and cold test (CT) were studied in 20 healthy subjects. The cc-TQ and sas-TQ were measured using NIR-T/BSS; cerebral blood flow velocity (CBFV) was measured using Doppler ultrasound of the left internal carotid artery; heart rate (HR) and beat-to-beat mean BP were recorded using a continuous finger-pulse photoplethysmography; respiratory rate (RR), minute ventilation (MV), end-tidal CO2 (EtCO2) and end-tidal O2 (EtO2) were measured using a metabolic and spirometry module of the medical monitoring system. Wavelet transform analysis was used to assess the relationship between BP and cc-TQ oscillations.ResultsHGT evoked an increase in BP (+15.9%; P<0.001), HR (14.7; P<0.001), SaO2 (+0.5; P<0.001) EtO2 (+2.1; P<0.05) RR (+9.2%; P = 0.05) and MV (+15.5%; P<0.001), while sas-TQ was diminished (-8.12%; P<0.001), and a clear trend toward cc-TQ decline was observed (-11.0%; NS). CBFV (+2.9%; NS) and EtCO2 (-0.7; NS) did not change during HGT. CT evoked an increase in BP (+7.4%; P<0.001), sas-TQ (+3.5%; P<0.05) and SaO2(+0.3%; P<0.05). HR (+2.3%; NS), CBFV (+2.0%; NS), EtO2 (-0.7%; NS) and EtCO2 (+0.9%; NS) remained unchanged. A trend toward decreased cc-TQ was observed (-5.1%; NS). The sas-TQ response was biphasic with elevation during the first 40 seconds (+8.8% vs. baseline; P<0.001) and subsequent decline (+4.1% vs. baseline; P<0.05). No change with respect to wavelet coherence and wavelet phase coherence was found between the BP and cc-TQ oscillations.ConclusionsShort sympathetic activation does not affect the cardiac and respiratory contribution to the relationship between BP—cc-TQ oscillations. HGT and CT display divergent effects on the width of the subarachnoid space, an indirect marker of changes in intracranial pressure.

Highlights

  • Using a novel method called near-infrared transillumination backscattering sounding (NIRT/BSS) that allows for the non-invasive measurement of pial artery pulsation and subarachnoid width in humans, we assessed the influence of sympathetic activation on the cardiac and respiratory contribution to blood pressure (BP) cc-TQ oscillations in healthy subjects

  • handgrip test (HGT) evoked an increase in BP (+15.9%; P

  • The flow of blood largely depends on the resistance of the vessels, which is controlled by adjustment of their diameter

Read more

Summary

Introduction

Using a novel method called near-infrared transillumination backscattering sounding (NIRT/BSS) that allows for the non-invasive measurement of pial artery pulsation (cc-TQ) and subarachnoid width (sas-TQ) in humans, we assessed the influence of sympathetic activation on the cardiac and respiratory contribution to blood pressure (BP) cc-TQ oscillations in healthy subjects

Methods
Results
Conclusions
Materials and Methods
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call