Abstract

The Kondo effect caused by the adsorption of iron phthalocyanine (FePc) on Au(111) was investigated by the combination of density functional theory and a numerical renormalization group calculation with scanning tunneling microscopy. We found that a novel Kondo effect is realized for a single FePc molecule on Au(111) by tuning the symmetry of the ligand field through the local coordination to the substrate. For FePc in the on top configuration where fourfold symmetry around the Fe(2+) ion is held, the orbital degrees of freedom survive, resulting in the spin+orbital SU(4) Kondo effect. In contrast, the reduced symmetry in the bridge configuration freezes the orbital degrees of freedom, leading to the spin SU(2) Kondo effect. These results provide a novel example to manipulate the many-body phenomena by tuning the local symmetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call