Abstract

Precisely quantifying the heterogeneity or disorder of network systems is important and desired in studies of behaviors and functions of network systems. Although various degree-based entropies have been available to measure the heterogeneity of real networks, heterogeneity implicated in the structures of networks can not be precisely quantified yet. Hence, we propose a new structure entropy based on automorphism partition. Analysis of extreme cases shows that entropy based on automorphism partition can quantify the structural heterogeneity of networks more precisely than degree-based entropies. We also summarized symmetry and heterogeneity statistics of many real networks, finding that real networks are more heterogeneous in the view of automorphism partition than what have been depicted under the measurement of degree-based entropies; and that structural heterogeneity is strongly negatively correlated to symmetry of real networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.