Abstract

It is well-known that the application of the Discrete Cosine Transform (DCT) in transform coding schemes is justified by the fact that it belongs to a family of transforms asymptotically equivalent to the Karhunen-Loeve Transform (KLT) of a first order Markov process. However, when the pixel-to-pixel correlation is low the DCT does not provide a compression performance comparable with the KLT. In this paper, we propose a set of symmetry-based Graph Fourier Transforms (GFT) whose associated graphs present a totally or partially symmetric grid. We show that this family of transforms well represents both natural images and residual signals outperforming the DCT in terms of energy compaction. We also investigate how to reduce the cardinality of the set of transforms through an analysis that studies the relation between efficient symmetry-based GFTs and the directional modes used in H.265 standard. Experimental results indicate that coding efficiency is high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.