Abstract

We discuss some general properties of the symmetry-resolved entanglement entropy in systems with particle number conservation. Using these general results, we describe how to obtain bounds on the entanglement components from correlation functions in Gaussian systems. We introduce majorization as an important tool to derive entanglement bounds. As an application, we derive lower bounds both for the number and the configurational entropy for chiral and Cn -symmetric topological phases. In some cases, our considerations also lead to an improvement of the previously known lower bounds for the entanglement entropy in such systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.