Abstract
The following note shows that the symmetry of various resistance formulae, often based on Lorentz reciprocity for linearly viscous fluids, applies to a wide class of nonlinear viscoplastic fluids. This follows from Edelen's nonlinear generalization of the Onsager relation for the special case of strongly dissipative rheology, where constitutive equations are derivable from his dissipation potential. For flow domains with strong dissipation in the interior and on a portion of the boundary, this implies strong dissipation on the remaining portion of the boundary, with strongly dissipative traction-velocity response given by a dissipation potential. This leads to a nonlinear generalization of Stokes resistance formulae for a wide class of viscoplastic fluid problems. We consider the application to nonlinear Darcy flow and to the effective slip for viscoplastic flow over textured surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.