Abstract

Three-dimensional, unsteady, laminar boundary layer equations of a general model of non-Newtonian fluids are treated. In this model, the shear stresses are considered to be arbitrary functions of velocity gradients. Using Lie Group analysis, the infinitesimal generators accepted by the equations are calculated for the arbitrary shear stress case. The extension of the Lie algebra, for the case of Newtonian fluids, is also presented. A general boundary value problem modeling the flow over a moving surface with suction or injection is considered. The restrictions imposed by the boundary conditions on the generators are calculated. Assuming all flow quantities to be independent of the z-direction, the three-independent-variable partial differential system is converted first into a two-independent-variable system by using two different subgroups of the general group. Lie Group analysis is further applied to the resulting equations, and final reductions to ordinary differential systems are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.