Abstract
We study a modified Hunter-Saxton equation from the Lie group-theoretic point of view. The Lie point symmetry generators of the underlying equation are derived. We utilize the Lie algebra admitted by the equation to obtain the optimal system of one-dimensional subalgebras of the Lie algebra of the equation. These subalgebras are then used to reduce the underlying equation to nonlinear third-order ordinary differential equations. Exact traveling wave group-invariant solutions for the equation are constructed by integrating the reduced ordinary differential equations. Moreover, using the variational method, we construct infinite number of nonlocal conservation laws by the transformation of the dependent variable of the underlying equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.