Abstract

We consider non-chiral symmetry-protected topological phases of matter in two spatial dimensions protected by a discrete symmetry such as $\mathbb{Z}_K$ or $\mathbb Z_K \times \mathbb Z_K $ symmetry. We argue that modular invariance/noninvariance of the partition function of the one-dimensional edge theory can be used to diagnose whether, by adding a suitable potential, the edge theory can be gapped or not without breaking the symmetry. By taking bosonic phases described by Chern-Simons K-matrix theories and fermionic phases relevant to topological superconductors as an example, we demonstrate explicitly that when the modular invariance is achieved, we can construct an interaction potential that is consistent with the symmetry and can completely gap out the edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.