Abstract

We derive a generic identity which holds for the metric (i.e. variational) energy–momentum tensor under any field transformation in any generally covariant classical Lagrangian field theory. The identity determines the conditions under which a symmetry of the Lagrangian is also a symmetry of the energy–momentum tensor. It turns out that the stress tensor acquires the symmetry if the Lagrangian has the symmetry in a generic curved spacetime. In this sense, a field theory in flat spacetime is not self-contained. When the identity is applied to the gauge invariant spin-2 field in Minkowski space, we obtain an alternative and direct derivation of a known no-go theorem: a linear gauge invariant spin-2 field, which is dynamically equivalent to linearized general relativity, cannot have a gauge invariant metric energy–momentum tensor. This implies that attempts to define the notion of gravitational energy density in terms of the metric energy–momentum tensor in a field-theoretical formulation of gravity must fail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call