Abstract
Let G be a weighted graph with adjacency matrix A=[a(ij)]. An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix D=[d(ij)], where for i not = j, d(ij) is the Euclidean distance between the nuclei i and j. In this matrix d(ii) can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for different nuclei. Balasubramanian (1995) computed the Euclidean graphs and their automorphism groups for benzene, eclipsed and staggered forms of ethane and eclipsed and staggered forms of ferrocene. This paper describes a simple method, by means of which it is possible to calculate the automorphism group of weighted graphs. We apply this method to compute the symmetry of tetraammine platinum(II) with C2v and C4v point groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.