Abstract

We investigate rotational dynamics of an actively driven rotor through experiments and numerical simulations. While probability density distributions of rotor angular velocity are strongly non-Gaussian, relative probabilities of observing rotation in opposite directions are shown to be linearly related to the angular velocity magnitude. We construct a stochastic model to describe transitions between different states from rotor angular velocity data and use the stochastic model to show that symmetry properties in probability density distributions are related to the detailed fluctuation relation (FR) of entropy productions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call