Abstract

For a perfectly plane symmetric object, we can find two views-mirrored at the plane of symmetry-that will yield the exact same image of that object. In consequence, having one image of a plane symmetric object and a calibrated camera, we automatically have a second, virtual image of that object if the 3-D location of the symmetry plane is known. We propose a method for estimating the symmetry plane from a set of projection images as the solution of a consistency maximization based on epipolar consistency. With the known symmetry plane, we can exploit symmetry to estimate in-plane motion by introducing the X-trajectory that can be acquired with a conventional short-scan trajectory by simply tilting the acquisition plane relative to the plane of symmetry. We inspect the symmetry plane estimation on a real scan of an anthropomorphic human head phantom and show the robustness using a synthetic dataset. Further, we demonstrate the advantage of the proposed method for estimating in-plane motion using the acquired projection data. Symmetry breakers in the human body are widely used for the detection of tumors or strokes. We provide a fast estimation of the symmetry plane, robust to outliers, by computing it directly from a set of projections. Further, by coupling the symmetry prior with epipolar consistency, we overcome inherent limitations in the estimation of in-plane motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.