Abstract

Through defining irreducible loop integrals (ILI's), a set of consistency conditions for the regularized (quadratically and logarithmically) divergent ILI's are obtained to maintain the generalized Ward identities of gauge invariance in non-Abelian gauge theories. The ILI's of arbitrary loop graphs can be evaluated from the corresponding Feynman loop integrals by adopting an ultraviolet (UV) divergence preserving parameter method. Overlapping UV divergences are explicitly shown to be factorizable in the ILI's and be harmless via suitable subtractions. A new regularization and renormalization method is presented in the initial space–time dimension of the theory. The procedure respects unitarity and causality. Of interest, the method leads to an infinity free renormalization and meanwhile maintains the symmetry principles of the original theory except the intrinsic mass scale caused conformal scaling symmetry breaking and the anomaly induced symmetry breaking. Tadpole graphs of Yang–Mills gauge fields are found to play an essential role for maintaining manifest gauge invariance via cancellations of quadratically divergent ILI's. Quantum field theories (QFT's) regularized through the new method are well defined and governed by a physically meaningful characteristic energy scale (CES) Mc and a physically interesting sliding energy scale (SES) μs which can run from μs ~ Mc to a dynamically generated mass gap μs = μc or to μs = 0 in the absence of mass gap and infrared (IR) problem. For Mc → ∞, the initial UV divergent properties of QFT's are recovered and well-defined. In fact, the CES Mc and SES at μs = μc play the role of UV and IR cutoff energy scales respectively. It is strongly indicated that the conformal scaling symmetry and its breaking mechanism play an important role for understanding the mass gap and quark confinement. The new method is developed to be applicable for both underlying renormalizable QFT's and effective QFT's. It also leads to a set of conjectures on mathematically interesting numbers and functional limits which may provide deep insights in mathematics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.