Abstract

Metals hosting gradually varying spatial magnetic textures are attracting attention as a new class of inductors. Under the application of an alternating current, the spin-transfer-torque effect induces oscillating dynamics of the magnetic texture, which subsequently yields the spin-motive force as a back action, resulting in an inductive voltage response. In general, a second-order tensor representing a material’s response can have an off-diagonal component. However, it is unclear what symmetries the emergent inductance tensor has and also which magnetic textures can exhibit a transverse inductance response. Here, we reveal both analytically and numerically that the emergent inductance tensor should be a symmetric tensor in the so-called adiabatic limit. By considering this symmetric tensor in terms of symmetry operations that a magnetic texture has, we further characterize the magnetic textures in which the transverse inductance response can appear. This finding provides a basis for exploring the transverse response of emergent inductors, which has yet to be discovered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call