Abstract

The noncrystallographic symmetries of chains of regular tetrahedra are determined by mapping the system of algebraic geometry and topology designs to the structural level. It has been shown that the basic structural unit of such a chain is a tetrablock: a seven-vertex linear aggregation over faces of four regular tetrahedra, which is implemented in linear (right- and left-handed) and planar versions. The symmetry groups of linear and planar tetrablocks are isomorphic, respectively, to the projective special linear group PSL(2, 7) of order 168 and the projective general linear group PGL(2, 7) of order 336. A class of structures formed by an assembly of tetrablocks having no common tetrahedra is introduced. Examples of tetrablock assembly over common face, leading to a Boerdijk–Coxeter helix, an α helix, and a helix used as one of collagen models are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.