Abstract

The symmetry of magnetic quantum tunneling has been studied in the prototype single molecule magnet Mn12-acetate using a micro-Hall effect magnetometer and superconducting high field vector magnet system. An average crystal fourfold symmetry is shown to be due to local molecular environments of twofold symmetry that are rotated by 90 degrees with respect to one another, confirming that disorder which lowers the molecule symmetry is as important to magnetic quantum tunneling. We have studied a subset of these lower (twofold) site symmetry molecules and present evidence for a Berry phase effect consistent with a local twofold symmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.