Abstract
AbstractBiFeO3 is recognized as the most important room temperature single phase multiferroic material. However, the weak magnetoelectric (ME) coupling remains as a key issue, which obstructs its applications. Since the magnetoelectric coupling in BiFeO3 is essentially hindered by the cycloidal spin structure, here efforts to improve the magnetoelectric coupling by destroying the cycloidal state and switching to the weak ferromagnetic state through symmetry modulation are reported. The structure is tuned from polar R3c to polar Pna21, and finally to nonpolar Pbnm by forming Bi1‐xNdxFeO3 solid solutions, where two morphotropic phase boundaries (MPBs) are detected. Greatly enhanced ferroelectric polarization is obtained together with the desired weak ferromagnetic characteristics in Bi1‐xNdxFeO3 ceramics at the compositions near MPBs. The change of magnetic state from antiferromagnetic (cycloidal state) to ferromagnetic (canted antiferromagnetic) is confirmed by the observation of magnetic domains using magnetic force microscopy. More interestingly, combining experiments and first‐principles‐based simulations, an electric field‐induced structural and magnetic transition from Pna21 back to R3c is demonstrated, providing a great opportunity for electric field‐controlled magnetism, and this transition is shown to be reversible with additional thermal treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.