Abstract

General properties of Einstein-Maxwell spaces, with both null and nonnull source-free Maxwell fields, are examined when these space-times admit various kinds of symmetry mappings. These include Killing, homothetic and conformal vector fields, curvature and Ricci collineations, and mappings belonging to the family of contracted Ricci collineations. In particular, the behavior of the electromagnetic field tensor is examined under these symmetry mappings. Examples are given of such space-times which admit proper curvature and proper Ricci collineations. Examples are also given of such space-times in which the metric tensor admits homothetic and other motions, but in which the corresponding Lie derivatives of the electromagnetic Maxwell tensor are not just proportional to the Maxwell tensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.