Abstract

There has been substantial work studying consensus problems for which there is a single common final state, although there are many real-world complex networks for which the complete consensus may be undesirable. More recently, the concept of group consensus whereby subsets of nodes are chosen to reach a common final state distinct from others has been developed, but the methods tend to be independent of the underlying network topology. Here, an alternative type of group consensus is achieved for which nodes that are "symmetric" achieve a common final state. The dynamic behavior may be distinct between nodes that are not symmetric. We show how group consensus for heterogeneous linear agents can be achieved via a simple coupling protocol that exploits the topology of the network. We see that group consensus is possible on both stable and unstable trajectories. We observe and characterize the phenomenon of "isolated group consensus," where one or more clusters may achieve group consensus while the other clusters do not.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call