Abstract
A direct visualization of the flux distribution in a Pb film covering a fivefold Penrose array of Co dots is obtained by mapping the local field distribution with a scanning Hall probe microscope. We demonstrate that stable vortex configurations can be found for fields H approximately 0.8H_{1}, H_{1}, and 1.6H_{1}, where H_{1} corresponds to one flux quantum per pinning site. The vortex pattern at 0.8H_{1} corresponds to one vacancy in one of the vertices of the thin tiles, whereas at 1.6H_{1} the vortex structure can be associated with one interstitial vortex inside each thick tile. Strikingly, for H = 1.6H_{1}, interstitial and pinned vortices arrange themselves in ringlike structures ("vortex corrals") which favor the formation of a giant vortex state at their center.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.