Abstract

A flat torus E^2/Λ is the quotient of the Euclidean plane E^2 with a full rank lattice Λ generated by two linearly independent vectors v_1 and v_2. A motif-transitive tiling T of the plane whose symmetry group G contains translations with vectors v_1 and v_2 induces a tiling T^* of the flat torus. Using a sequence of injective maps, we realize T^* as a tiling T-of a round torus (the surface of a doughnut) in the Euclidean space E^3. This realization is obtained by embedding T^* into the Clifford torus S^1 × S^1 ⊆ E^4 and then stereographically projecting its image to E^3. We then associate two groups of isometries with the tiling T^* – the symmetry group G^* of T^* itself and the symmetry group G-of its Euclidean realization T-. This work provides a method to compute for G^* and G-using results from the theory of space forms, abstract polytopes, and transformation geometry. Furthermore, we present results on the color symmetry properties of the toroidal tiling T^* in relation with the color symmetry properties of the planar tiling T. As an application, we construct toroidal polyhedra from T-and use these geometric structures to model carbon nanotori and their structural analogs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.