Abstract
Reaction-diffusion equations are ubiquitous in various scientific domains and their patterns represent a fascinating area of investigation. However, many of these patterns are unstable and, therefore, challenging to observe. To overcome this limitation, we present new noninvasive feedback controls based on symmetry groupoids. As a concrete example, we employ these controls to selectively stabilize unstable equilibria of the Chafee-Infante equation under Dirichlet boundary conditions on the interval. Unlike conventional reflection-based control schemes, our approach incorporates additional symmetries that enable us to design new convolution controls for stabilization. By demonstrating the efficacy of our method, we provide a new tool for investigating and controlling systems with unstable patterns, with potential implications for a wide range of scientific disciplines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.