Abstract

A coupled cell system is a network of dynamical systems, or coupled together. Such systems can be represented schematically by a directed graph whose nodes correspond to cells and whose edges represent couplings. A symmetry of a coupled cell system is a permutation of the cells that preserves all internal dynamics and all couplings. Symmetry can lead to patterns of synchronized cells, rotating waves, multirhythms, and synchronized chaos. We ask whether symmetry is the only mechanism that can create such states in a coupled cell system and show that it is not. The key idea is to replace the symmetry group by the symmetry groupoid, which encodes in- formation about the input sets of cells. (The input set of a cell consists of that cell and all cells connected to that cell.) The admissible vector fields for a given graph—the dynamical systems with the corresponding internal dynamics and couplings—are precisely those that are equivariant under the symmetry groupoid. A pattern of synchrony is if it arises for all admissible vector fields. The first main result shows that robust patterns of synchrony (invariance of subspaces under all admissible vector fields) are equivalent to the combinatorial condition that an equivalence relation on cells is balanced. The second main result shows that admissible vector fields restricted to polydiagonal subspaces are themselves admissible vector fields for a new coupled cell network, the network. The existence of quotient networks has surprising implications for synchronous dynamics in coupled cell systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call