Abstract
The symmetry groups of one-dimensional elastodynamics problem of nonlocal elasticity are investigated and we get a classification for the problem. The determining equations of the system of Fredholm integro-differential equations corresponding to one-dimensional nonlocal elasticity equation are found and solved. We get the differential equations that include the kernel function and the independent term. The symmetry groups are determined using these functions. We compare the results of one-dimensional nonlocal elasticity with the results of the Voltera integro-differential equation corresponding to one-dimensional visco-elasticity equation in the conclusion section of the manuscript.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.