Abstract

In this paper, we introduce asymmetry geometryfor all those mathematical structures which can be characterized by means of a generalization (which we call pairing) of a finite rectangular table. In more detail, let$\unicode[STIX]{x1D6FA}$be a given set. Apairing$\mathfrak{P}$on$\unicode[STIX]{x1D6FA}$is a triple$\mathfrak{P}:=(U,F,\unicode[STIX]{x1D6EC})$, where$U$and$\unicode[STIX]{x1D6EC}$are nonempty sets and$F:U\times \unicode[STIX]{x1D6FA}\rightarrow \unicode[STIX]{x1D6EC}$is a map having domain$U\times \unicode[STIX]{x1D6FA}$and codomain$\unicode[STIX]{x1D6EC}$. Through this notion, we introduce a local symmetry relation on$U$and a global symmetry relation on the power set${\mathcal{P}}(\unicode[STIX]{x1D6FA})$. Based on these two relations, we establish the basic properties of our symmetry geometry induced by$\mathfrak{P}$. The basic tool of our study is a closure operator$M_{\mathfrak{P}}$, by means of which (in the finite case) we can represent any closure operator. We relate the study of such a closure operator to several types of others set operators and set systems which refine the notion of an abstract simplicial complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call