Abstract

The coupling between a ferromagnet and an antiferromagnet can establish a directional anisotropy called exchange bias. In many systems this exchange bias is reduced upon subsequent field cycling, which is referred to as training effects. Numerical simulations of a simple coherent rotation model suggest that the symmetry of the anisotropy in the antiferromagnet is crucial for the understanding of training effects in exchange bias systems. Namely, the existence of multiple antiferromagnetic easy anisotropy axes can initially stabilize a noncollinear arrangement of the antiferromagnetic spins, which relaxes into a collinear arrangement after the first magnetization reversal of the ferromagnet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.