Abstract
Precise manipulation and monitoring spin transport in one-dimensional (1D) systems is a long-sought goal in the field of nano-spintronics. Based on first-principles calculations, we report the observation of half-integer conductance quantization in the Cobalt-fulvalene sandwich nanowire. Compared with a pure monatomic Cobalt wire, the introduction of fulvalene molecules leads to three important features: Firstly, the strong coupling between the fulvalene and the Cobalt prevents the contamination of the ambient air, ensuring both chemical and physical stabilities; Secondly, the fulvalene symmetry-selectively filters out most of the d-type orbitals of the Cobalt while leaving a single d-type orbital to form an open spin channel around the Fermi level, which offers a mechanism to achieve the observed half-integer conductance; Thirdly, it maintains a superexchange coupling between adjacent Co atoms to achieve a high Curie temperature. Spin transport calculations show that this half-metallic nanowire can serve as a perfect spin filter or a spin valve device, thus revealing the potential of Cobalt-fulvalene sandwich nanowire as a promising building block of high-performance spintronics technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.