Abstract

One of the main challenges of domain-independent numeric planning is the complexity of the search problem. The exploitation of structural symmetries in a search problem can constitute an effective method of pruning search branches that may lead to exponential improvements in performance. For over a decade, symmetry breaking techniques have been successfully used within both optimal and satisficing classical planning. In this work, we show that symmetry detection methods applied in classical planning with some effort can be modified to detect symmetries in linear numeric planning. The detected symmetry group, thereafter, can be used almost directly in the A*-based symmetry breaking algorithms such as DKS and Orbit Space Search. We empirically validate that symmetry pruning can yield a substantial reduction in the search effort, even if algorithms are equipped with a strong heuristic, such as LM-cut.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.