Abstract

Achieving highly spin-polarized electric currents in atomic-scale junctions is of great importance in the field of nanoelectronics and spintronics. Based on robust symmetry considerations, we propose a mechanism to block completely one of spin conduction channels for a broad class of atomic and molecular junctions bridging two ferromagnetic electrodes. This particular behavior is due to the wave function orthogonality between spin up s-like states in ferromagnetic electrode and available π channels in the junction. As a consequence, the system would ideally yield 100% spin-polarized current, with a junction acting thus as a "half-metallic" conductor. Using ab initio electron transport calculations, we demonstrate this principle on two examples: (i) a short carbon chain and (ii) a π-conjugated molecule (polythiophene) connected either to model semi-infinite Ni wires or to realistic Ni(111) electrodes. It is also predicted that such atomic-scale junctions should lead to very high (ideally, infinite) magneto-resistance ratios since the electric current gets fully blocked if two electrodes have antiparallel magnetic alignment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call