Abstract

Group theory is a powerful tool to explore fundamental symmetry constraints for the physical properties of crystal structures, e.g. it is well-known that only a few components of the elastic constants are independent due to the symmetry constraint. This work further applies group theory to derive constraint relationships for high-order elastic constants with respect to the orientation angle, where the constraint relationships are more explicit than the traditional tensor transformation law. These analytic symmetry constraints are adopted to explain the molecular dynamics simulation results, which disclose that the high-order elastic constants are highly anisotropic with an anisotropy percentage of up to 25% for the hexagonal boron nitride monolayer. The elastic constant is a basic quantity in the mechanics field, so its high anisotropy shall cause strong anisotropy for other mechanical properties. Based on the anisotropic high-order elastic constants, we demonstrate that Poisson's ratio is highly anisotropic for the hexagonal boron nitride at large strains. These findings provide fundamental insights into the symmetry dependence of high-order elastic constants and other mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.